Group: 6078
VisitorId: 3707


Next Page: POLICY [6078]

Standard Model

From Wikipedia, the free encyclopedia

This article is about a non-mathematical general overview of the Standard Model of particle physics. For a mathematical description, see Standard Model (mathematical formulation). For other uses, see Standard model (disambiguation).
Elementary particles included in the Standard Model

The Standard Model of particle physics is the theory describing three of the four known fundamental forces (the electromagnetic, weak, and strong interactions, and not including the gravitational force) in the universe, as well as classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists around the world,[1] with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, confirmation of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy.

Although the Standard Model is believed to be theoretically self-consistent[2] and has demonstrated huge successes in providing experimental predictions, it leaves some phenomena unexplained and falls short of being a complete theory of fundamental interactions. It does not fully explain baryon asymmetry, incorporate the full theory of gravitation[3] as described by general relativity, or account for the accelerating expansion of the Universe as possibly described by dark energy. The model does not contain any viable dark matter particle that possesses all of the required properties deduced from observational cosmology. It also does not incorporate neutrino oscillations and their non-zero masses.

The development of the Standard Model was driven by theoretical and experimental particle physicists alike. For theorists, the Standard Model is a paradigm of a quantum field theory, which exhibits a wide range of physics including spontaneous symmetry breaking, anomalies and non-perturbative behavior. It is used as a basis for building more exotic models that incorporate hypothetical particles, extra dimensions, and elaborate symmetries (such as supersymmetry) in an attempt to explain experimental results at variance with the Standard Model, such as the existence of dark matter and neutrino oscillations.

Overview

At present, matter and energy are best understood in terms of the kinematics and interactions of elementary particles. To date, physics has reduced the laws governing the behavior and interaction of all known forms of matter and energy to a small set of fundamental laws and theories. A major goal of physics is to find the “common ground” that would unite all of these theories into one integrated theory of everything, of which all the other known laws would be special cases, and from which the behavior of all matter and energy could be derived (at least in principle).

Particle content

The Standard Model includes members of several classes of elementary particles, which in turn can be distinguished by other characteristics, such as color charge.

All particles can be summarized as follows:

Elementary particles
Elementary fermions


Half-integer spin
Obey the Fermi–Dirac statistics

Elementary bosons


Integer spin
Obey the Bose–Einstein statistics

Quarks and antiquarks


Spin = 1/2
Have color charge
Participate in strong interactions

Leptons and antileptons


Spin = 1/2
No color charge
Electroweak interactions

Gauge bosons


Spin = 1
Force carriers

Scalar bosons


Spin = 0

Generations

  1. Up (u), Down (d)
  2. Charm (c), Strange (s)
  3. Top (t), Bottom (b)
Generations

  1. Electron (e−)¹, Electron neutrino (ν↓e)
  2. Muon (μ−), Muon neutrino (νμ)
  3. Tau (τ−), Tau neutrino (ντ)
Four kinds (four fundamental interactions)

  1. Photon (γ, electromagnetic interaction)
  2. W and Z bosons (W+,W−,Z, weak interaction)
  3. Eight types of gluons (g, strong interaction)
  4. Graviton (G, gravity, hypothetical)²
Higgs boson (H0)

Notes:
1. The antielectron (
e+
) is traditionally called positron.
2. The known force carrier bosons all have spin = 1 and are therefore vector bosons. The hypothetical graviton has spin = 2 and is a tensor boson; whether it is a gauge boson as well, is unknown.

Fermions
Summary of interactions between particles described by the Standard Model

The Standard Model includes 12 elementary particles of spin ​1⁄2, known as fermions. According to the spin–statistics theorem, fermions respect the Pauli exclusion principle. Each fermion has a corresponding antiparticle.

The fermions of the Standard Model are classified according to how they interact (or equivalently, by what charges they carry). There are six quarks (up, down, charm, strange, top, bottom), and six leptons (electron, electron neutrino, muon, muon neutrino, tau, tau neutrino). Pairs from each classification are grouped together to form a generation, with corresponding particles exhibiting similar physical behavior (see table).

The defining property of the quarks is that they carry color charge, and hence interact via the strong interaction. A phenomenon called color confinement results in quarks being very strongly bound to one another, forming color-neutral composite particles (hadrons) containing either a quark and an antiquark (mesons) or three quarks (baryons). The familiar proton and neutron are the two baryons having the smallest mass. Quarks also carry electric charge and weak isospin. Hence they interact with other fermions both electromagnetically and via the weak interaction. The remaining six fermions do not carry color charge and are called leptons. The three neutrinos do not carry electric charge either, so their motion is directly influenced only by the weak nuclear force, which makes them notoriously difficult to detect. However, by virtue of carrying an electric charge, the electron, muon, and tau all interact electromagnetically.

Each member of a generation has greater mass than the corresponding particles of lower generations. The first-generation charged particles do not decay, hence all ordinary (baryonic) matter is made of such particles. Specifically, all atoms consist of electrons orbiting around atomic nuclei, ultimately constituted of up and down quarks. Second- and third-generation charged particles, on the other hand, decay with very short half-lives and are observed only in very high-energy environments. Neutrinos of all generations also do not decay and pervade the universe, but rarely interact with baryonic matter.

Gauge bosons
The above interactions form the basis of the standard model. Feynman diagrams in the standard model are built from these vertices. Modifications involving Higgs boson interactions and neutrino oscillations are omitted. The charge of the W bosons is dictated by the fermions they interact with; the conjugate of each listed vertex (i.e. reversing the direction of arrows) is also allowed.

In the Standard Model, gauge bosons are defined as force carriers that mediate the strong, weak, and electromagnetic fundamental interactions.

Interactions in physics are the ways that particles influence other particles. At a macroscopic level, electromagnetism allows particles to interact with one another via electric and magnetic fields, and gravitation allows particles with mass to attract one another in accordance with Einstein’s theory of general relativity. The Standard Model explains such forces as resulting from matter particles exchanging other particles, generally referred to as force mediating particles. When a force-mediating particle is exchanged, at a macroscopic level the effect is equivalent to a force influencing both of them, and the particle is therefore said to have mediated (i.e., been the agent of) that force. The Feynman diagram calculations, which are a graphical representation of the perturbation theory approximation, invoke “force mediating particles”, and when applied to analyze high-energy scattering experiments are in reasonable agreement with the data. However, perturbation theory (and with it the concept of a “force-mediating particle”) fails in other situations. These include low-energy quantum chromodynamics, bound states, and solitons.

The gauge bosons of the Standard Model all have spin (as do matter particles). The value of the spin is 1, making them bosons. As a result, they do not follow the Pauli exclusion principle that constrains fermions: thus bosons (e.g. photons) do not have a theoretical limit on their spatial density (number per volume). The different types of gauge bosons are described below.

Photons mediate the electromagnetic force between electrically charged particles. The photon is massless and is well-described by the theory of quantum electrodynamics.
The
W+
,
W−
, and
Z
gauge bosons mediate the weak interactions between particles of different flavors (all quarks and leptons). They are massive, with the
Z
being more massive than the

. The weak interactions involving the

exclusively act on left-handed particles and right-handed antiparticles. Furthermore, the

carries an electric charge of +1 and −1 and couples to the electromagnetic interaction. The electrically neutral
Z
boson interacts with both left-handed particles and antiparticles. These three gauge bosons along with the photons are grouped together, as collectively mediating the electroweak interaction.
The eight gluons mediate the strong interactions between color charged particles (the quarks). Gluons are massless. The eightfold multiplicity of gluons is labeled by a combination of color and anticolor charge (e.g. red–antigreen).[nb 1] Because the gluons have an effective color charge, they can also interact among themselves. The gluons and their interactions are described by the theory of quantum chromodynamics.

The interactions between all the particles described by the Standard Model are summarized by the diagrams on the right of this section.

Higgs boson
Main article: Higgs boson

The Higgs particle is a massive scalar elementary particle theorized by Peter Higgs in 1964, when he showed that Goldstone’s 1962 theorem (generic continuous symmetry, which is spontaneously broken) provides a third polarisation of a massive vector field. Hence, Goldstone’s original scalar doublet, the massive spin-zero particle, was proposed as the Higgs boson. (see 1964 PRL symmetry breaking papers) and is a key building block in the Standard Model.[7][8][9][21] It has no intrinsic spin, and for that reason is classified as a boson (like the gauge bosons, which have integer spin).

The Higgs boson plays a unique role in the Standard Model, by explaining why the other elementary particles, except the photon and gluon, are massive. In particular, the Higgs boson explains why the photon has no mass, while the W and Z bosons are very heavy. Elementary-particle masses, and the differences between electromagnetism (mediated by the photon) and the weak force (mediated by the W and Z bosons), are critical to many aspects of the structure of microscopic (and hence macroscopic) matter. In electroweak theory, the Higgs boson generates the masses of the leptons (electron, muon, and tau) and quarks. As the Higgs boson is massive, it must interact with itself.

Because the Higgs boson is a very massive particle and also decays almost immediately when created, only a very high-energy particle accelerator can observe and record it. Experiments to confirm and determine the nature of the Higgs boson using the Large Hadron Collider (LHC) at CERN began in early 2010 and were performed at Fermilab’s Tevatron until its closure in late 2011. Mathematical consistency of the Standard Model requires that any mechanism capable of generating the masses of elementary particles becomes visible[clarification needed] at energies above 1.4 TeV;[22] therefore, the LHC (designed to collide two 7 TeV proton beams) was built to answer the question of whether the Higgs boson actually exists.[23]

On 4 July 2012, two of the experiments at the LHC (ATLAS and CMS) both reported independently that they found a new particle with a mass of about 125 GeV/c2 (about 133 proton masses, on the order of 10×10−25 kg), which is “consistent with the Higgs boson”. It was later confirmed to be the searched-for Higgs boson.[30]